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Abstract — Superconducting magnetic energy storage 
(SMES) systems store energy in the magnetic field created by 
the flow of direct current in a superconducting coil. In SMES 
systems, configurations of coils are regarded as important 
factors. This problem has been accepted as the TEAM 
workshop problem 22, which is multi-objective problem with 
many design variables and constraints. Thus, it is not efficient 
to apply gradient-based local optimization for this problem. In 
this paper, sequential kriging metamodel based stochastic 
global optimization is proposed to resolve these difficulties. 
Since this technique explores a global optimum by kriging 
metamodel that can evaluate responses rapidly, computational 
cost of global optimization can be reduced. 

I. INTRODUCTION 
SMES devices offer the opportunity to store energy in 

magnetic fields in a simple way [1]. In SMES solenoid, two 
concentric coils carrying current with opposite direction 
and running under superconducting conditions offer the 
opportunity to store a significant amount of energy in their 
magnetic fields while keeping the stray field within certain 
limits. An optimal design of the system should, therefore, 
couple the desired value of energy to be stored with a 
minimal stray field. This problem has been accepted as 
benchmark problem TEAM problem 22 [2].   

Design optimization technique becoming increasingly 
significant in design of industrial products that aim to 
maximize a desirable performance while satisfying design 
constraints. Especially, global optimization technique has 
gained much attention in design of industrial products 
because it can find not only systematically the best design 
solution within design space, but also as well as provide 
multiple alternatives. However, considerable computational 
burden of global optimization has been still a challenging 
problem. In order to overcome this difficulty, metamodel 
has been recently emerged as an efficient alternative [3]. 
Metamodel is an approximate model to transfer the implicit 
relationship between design variables and response into 
explicit one that can be easily expressed with basis 
functions or polynomials. One of the advantages is that 
metamodel can evaluate responses quickly. 

In this paper, sequential kriging metamodel based 
stochastic global optimization technique is performed for 
SMES solenoids problem. 

II. SMES PROBLEM 
Fig. 1 shows the eight design parameters of two coils. 

Table I summarizes the constraints on the eight parameters. 
The objective function of this problem has to take both the 
energy requirement (E should be as close as possible to 180 
MJ) and the stray field requirement (Bstray evaluated along 

22 equidistant points along line a and line b in Fig. 1 as 
small as possible) into account; hence, the problem is a 
multi-objective problem. However, the two objectives are 
mapped into a single objective function as follows. 

ref

ref

norm

stray

E

EE

B
B

OF
−

+= 2

2

         (1) 

where Eref = 180MJ, Bnorm = 200μT and B2
stray is defined as 
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The superconducting material should not violate the quench 
condition that links together the value of the current density 
and the maximum value of magnetic flux density. The 
critical curve has been approximated by (3). 

( ) 2/0.544.6 mmA+−= BJ       (3) 
This optimization problem has a constraint, 8-design 

variables and nonlinear objective function that is consist of 
error of energy to be stored and stray field. It is not easy to 
find optimum solution of this problem. Therefore, in the 
next part, proposed global optimization is explained in 
order to resolve the difficulty  
 

 
Fig. 1. Configuration of the SMES device with eight parameters 

 

TABLE I 
BOX CONSTRAINTS OF THE SMES PROBLEM 
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III. SEQUENTIAL KRIGING METAMODEL BASED 
STOCHASTIC GLOBAL OPTIMIZATION 

Kriging, so-called design and analysis of computer 
experiment (DACE) model, is the interpolation model 
where the prediction coincides with the simulation response 
at sampled points exactly [4]. Once the kriging metamodel 
has been generated, it can provide not only the predicted 
value, but also its stochastic prediction error denoted by 2σ) , 
the so-called mean squared error(MSE). MSE is directly 
related to the uncertainty of the predicted value. Let us 
consider a response of kriging metamodel )( 1xY

)  at design 
point of x1. In kriging theory, there is a basic assumption 
that both sample data and predicted values of kriging 
metamodel are normally distributed. The stochastic 
probability that )( 1xY

)  is smaller than minf  , the probability 
of improvement, is defined as  
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where  ( )•Φ  is CDF of standard normal distribution and 1I  
is a stochastic quantity depending on 1x . minf  denotes the 
minimum value among observed data. 

On the other hand, if we consider G(x) as a constraint 
function, the probability of feasibility can be defined just 
like probability of improvement. Similar to (4), the 
probability of feasibility at 1x is defined as follows 
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Sequential kriging metamodel based stochastic global 
optimization technique has the following search strategies. 

Step 1: An initial sample set is chosen and then kriging 
metamodels for objective and constraint functions are 
constructed. 

Step 2: If no feasible point has yet been sampled, 
explore a feasible point using probability of feasibility,  
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otherwise go to step 3. 
Step 3: Solve an original constrained optimization with 

metamodels of objective and constraint functions as follows: 
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If at least three points have already been sampled within 
tol1 of the last iteration, then go to step 4. 

Step 4: Attempt to find an additional feasible point 
using Eq. (8). Once a feasible point is sampled at least tol2 
away from other feasible samples, begin another local 
search (go to step3).  
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Step 5: The process has been terminated once the 
number of total function calls exceeds a user-defined 
threshold. In our implementation, we set the parameters 

tol1=1% and tol2=5%, D is minimum distance between 
sample points.     

IV. RESULTS 

For applying this algorithm, 3-level full factorial 
sampling is used as initial sample set. The total number of 
function calls is specified as 100. As shown in Fig. 2, we 
can find a global optimum with 84 function calls. The 
global optimum is ]384.0,239.0 ,11.3[=optx  and constraint 
becomes active at optimum. The objective function value of 
optimum design decrease by about 71.64% respectively 
compared with initial point, and we can find alternative 
local optimum. The results are shown in table Ⅱ. 

 
Fig. 2. History plot of optimization 

TABLE Ⅱ 
OPTIMIZATION RESULT 

Optimum point B2
stray 

[ ]Tμ  
Energy 
[ ]MJ  

Object 
function 

Function calls 
for optimum 

[3.11, 0.239, 0.384] 0.776 179.97 0.0864 84 [3.17,0.357,0.248] 0.846 179.61 0.0962 

V. CONCLUSION 

TEAM workshop problem 22 is multi-objective 
problem with many design variables and constraints. To 
resolve this problem, it is required to apply global 
optimization. However, typical global optimization 
techniques need a lot of function calls. In this paper, 
sequential metamodel based statistical global optimization 
technique is proposed. In this proposed procedure, we can 
search for an initial feasible region and refine a local 
optimum. Then, we explore another feasible region with the 
highest probability of improving upon the current best point. 
Therefore, computational cost of global optimization can be 
significantly reduced. Also we can find alternative local 
optima.  
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